确定大脑是否正常发展是儿科神经加理学和神经内科的关键组成部分。婴儿的脑磁共振成像(MRI)展示了超越髓鞘的特定发展模式。虽然放射科医师使用髓鞘模式,脑形态和尺寸特征来确定年龄充足的脑成熟度,但这需要多年的儿科神经皮层经验。没有标准化标准,在三岁之前的MRI中大脑结构成熟度的视觉估计仍然是观察者间和观察者内的差异。大脑发育年龄的更客观估计可以帮助医生们早先识别许多神经发育病症和疾病。然而,这种数据自然是难以获得的,并且观察者地面真理由于评估的主观性而不是黄金标准。在这种光明中,我们探讨了解决这项任务的一般可行性,以及不同方法的效用,包括在T1加权,T2加权的融合中培训的两维卷积神经网络(CNN)和三维卷积神经网络(CNN)质子密度(Pd)来自84个个体受试者的加权序列分为来自出生于3岁的4岁群体。以最佳性能的方法,在中央轴向厚板上使用2D CNN实现0.90 [95%CI:0.86-0.94]的精度。我们讨论了与3D网络的比较,并展示了如何对仅使用一个序列(T1W)的性能。总之,尽管3D CNN方法的理论优势,但在有限数据的情况下,这种方法差不多达到更简单的架构。代码可以在https://github.com/shabanian2018/age_mri-classification中找到
translated by 谷歌翻译
Covid-19是一种攻击上呼吸道和肺部的新型病毒。它的人对人的传播性非常迅速,这在个人生活的各个方面都引起了严重的问题。尽管一些感染的人可能仍然完全无症状,但经常被目睹有轻度至重度症状。除此之外,全球成千上万的死亡案件表明,检测Covid-19是社区的紧急需求。实际上,这是在筛选医学图像(例如计算机断层扫描(CT)和X射线图像)的帮助下进行的。但是,繁琐的临床程序和大量的每日病例对医生构成了巨大挑战。基于深度学习的方法在广泛的医疗任务中表现出了巨大的潜力。结果,我们引入了一种基于变压器的方法,用于使用紧凑卷积变压器(CCT)自动从X射线图像中自动检测COVID-19。我们的广泛实验证明了该方法的疗效,精度为98%,比以前的作品表现优于先前的作品。
translated by 谷歌翻译
基于深度学习的图生成方法具有显着的图形数据建模能力,从而使它们能够解决广泛的现实世界问题。使这些方法能够在生成过程中考虑不同的条件,甚至通过授权它们生成满足所需标准的新图形样本来提高其有效性。本文提出了一种条件深图生成方法,称为SCGG,该方法考虑了特定类型的结构条件。具体而言,我们提出的SCGG模型采用初始子图,并自动重新收获在给定条件子结构之上生成新节点及其相应的边缘。 SCGG的体系结构由图表表示网络和自动回归生成模型组成,该模型是端到端训练的。使用此模型,我们可以解决图形完成,这是恢复缺失的节点及其相关的部分观察图的猖and固有的困难问题。合成数据集和现实世界数据集的实验结果证明了我们方法的优势与最先进的基准相比。
translated by 谷歌翻译
同工型是从同一基因位点产生的MRNA,称为替代剪接。研究表明,超过95%的人类多外XEX基因经历了替代剪接。尽管mRNA序列的变化很少,但它们可能会对细胞功能和调节产生系统的影响。广泛报道了基因的同工型具有不同甚至对比的功能。大多数研究表明,替代剪接在人类健康和疾病中起着重要作用。尽管具有广泛的基因功能研究,但关于同工型功能的信息很少。最近,已经提出了一些基于多个实例学习的计算方法,用于使用基因函数和基因表达谱预测同工型函数。但是,由于缺乏标记的培训数据,他们的性能并不理想。另外,概率模型(例如条件随机场(CRF))已被用于建模同工型之间的关系。该项目使用所有数据和有价值的信息,例如同工型序列,表达曲线和基因本体论图,并提出了基于深神经网络的综合模型。 Uniprot基因本体论(GO)数据库用作基因函数的标准参考。 NCBI REFSEQ数据库用于提取基因和同工型序列,NCBI SRA数据库用于表达式配置文件数据。曲线下(ROC AUC)下的接收器操作特征区域和曲线下的Precision-Recall等指标用于测量预测准确性。
translated by 谷歌翻译
乳腺癌是女性最常见的恶性肿瘤,每年负责超过50万人死亡。因此,早期和准确的诊断至关重要。人类专业知识是诊断和正确分类乳腺癌并定义适当的治疗,这取决于评价不同生物标志物如跨膜蛋白受体HER2的表达。该评估需要几个步骤,包括免疫组织化学或原位杂交等特殊技术,以评估HER2状态。通过降低诊断中的步骤和人类偏差的次数的目标,赫洛挑战是组织的,作为第16届欧洲数字病理大会的并行事件,旨在自动化仅基于苏木精和曙红染色的HER2地位的评估侵袭性乳腺癌的组织样本。评估HER2状态的方法是在全球21个团队中提出的,并通过一些提议的方法实现了潜在的观点,以推进最先进的。
translated by 谷歌翻译
现代机器学习系统越来越多地以广泛的个人数据收集为特征,尽管回报降低并增加了这种做法的社会成本。然而,数据最小化是欧盟一般数据保护法规('GDPR')中列出的核心数据保护原则之一,并要求仅处理足够,相关且仅限于必要物品的个人数据。但是,由于缺乏技术解释,该原则的采用有限。在这项工作中,我们以机器学习和法律的文献为基础提出FIDO,这是抑制数据过度收集的框架。 Fido学会了基于与系统性能相关的数据最小化的解释来限制数据收集。具体而言,Fido通过迭代更新性能曲线的估计值或数据集大小和性能之间的关系,从而提供了数据收集,以停止标准。 FIDO通过分段功率定律技术估算性能曲线,该技术在整个数据收集过程中分别对算法性能的不同阶段进行建模。经验实验表明,该框架会产生准确的性能曲线和数据收集,从而在数据集中停止标准并功能采集算法。我们进一步证明,许多其他曲线家庭系统地高估了其他数据的回报。在设计数据最小化框架时,我们的调查结果和分析提供了对相关考虑因素的更深入的见解,包括主动功能获取对单个用户的影响以及用户特定数据最小化的可行性。我们以实施数据最小化的实用建议得出结论。
translated by 谷歌翻译
疾病预测是医学应用中的知名分类问题。 GCNS提供了一个强大的工具,用于分析患者相对于彼此的特征。这可以通过将问题建模作为图形节点分类任务来实现,其中每个节点是患者。由于这种医学数据集的性质,类别不平衡是疾病预测领域的普遍存在问题,其中类的分布是歪曲的。当数据中存在类别不平衡时,现有的基于图形的分类器倾向于偏向于主要类别并忽略小类中的样本。另一方面,所有患者中罕见阳性病例的正确诊断在医疗保健系统中至关重要。在传统方法中,通过将适当的权重分配给丢失函数中的类别来解决这种不平衡,这仍然依赖于对异常值敏感的权重的相对值,并且在某些情况下偏向于小类(ES)。在本文中,我们提出了一种重加权的对抗性图形卷积网络(RA-GCN),以防止基于图形的分类器强调任何特定类的样本。这是通过将基于图形的神经网络与每个类相关联来完成的,这负责加权类样本并改变分类器的每个样本的重要性。因此,分类器自身调节并确定类之间的边界,更加关注重要样本。分类器和加权网络的参数受到侵犯方法训练。我们在合成和三个公共医疗数据集上显示实验。与最近的方法相比,ra-gcn展示了与最近的方法在所有三个数据集上识别患者状态的方法相比。详细分析作为合成数据集的定量和定性实验提供。
translated by 谷歌翻译